Presented at
2014 Washington Methanol Policy Forum
March 18, 2014
Washington, DC

Michael D. Jackson
Research Director

FUEL FREEDOM™
CHEAPER. CLEANER. AMERICAN-MADE.
Agenda

• Fuel Freedom Foundation
• Methanol for LDVs
• Research Program
• Summary
Fuel Freedom Foundation

• Non-partisan initiative dedicated to reducing U.S. dependence on petroleum

• Initiate changes necessary for gasoline, diesel, natural gas, ethanol, methanol, and electricity to compete on equal footing
 – Overcome the regulatory, commercial, and practical barriers that impede innovation in fuel production, consumption, and true market competition
Decoupling of Natural Gas and Oil Prices

- **Upward Price Pressure from** Demand from Developing Countries
- **Downward Price Pressure from** U.S. Shale Gas Production
A Variety of Fuel Options Possible from Natural Gas

- Battery Electric Vehicles
- Plug-in Hybrid Electric Vehicles
- Internal Combustion Engine Vehicles
- Electric Vehicles
- Methanol
- Ethanol
- Synthetic Gasoline
- Compressed NG
- Natural Gas
- Liquified NG
- Hydrogen
- Fuel Cell Vehicles
Methanol as Transportation Fuel

• Focus on existing light duty vehicle fleet
 – Fuel demand large
 – Existing fleet of FFVs
 – Possible conversions
 – Provides business case for investing in production, distribution and retailing

• Methanol can be marketed at prices to provide a value proposition to consumers
 – Low cost of FFV technology and conversions
Existing Fleet of FFVs and Potentially Larger Population with Vehicle Conversions

- Engine control system reprogrammed
- Fuel tank and fuel line from material compatible with alcohol
- Fuel pump and injectors designed for more fuel throughput
- Active oxygen sensor connected to engine control

Total incremental production cost ~ 100
Methanol Research Needs

Supply Chain & Vehicles

<table>
<thead>
<tr>
<th>Fuel Production</th>
<th>Methanol</th>
<th>Research Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Production</td>
<td>Chemical methanol only</td>
<td></td>
</tr>
<tr>
<td>Fuel Specification</td>
<td>ASTM D5797 under revision</td>
<td></td>
</tr>
<tr>
<td>Natural Gas Feedstock</td>
<td>Commercial</td>
<td></td>
</tr>
<tr>
<td>US Production facilities</td>
<td>No but coming back</td>
<td></td>
</tr>
<tr>
<td>RBOB</td>
<td>No (RVP increase)</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Transportation and Blending Equipment

Pipeline	No
Rail tanker cars	No but possible to use methanol
Terminal Storage	No
Blending Facilities	No
Tanker Truck	No but possible gasoline

Fuel Station Equipment

Storage Tank & Piping	Methanol should be ok	
Dispenser (UL approved)	No	2
Stage II vapor recovery	No	2

Market

| US Stations | none |
| Market Penetration | none |

Vehicle

15% blends	No, but China, Australia, Israel investigating	
FFVs	Maybe M56	1
Existing Vehicles	No (materials) & possible pumps, injectors, sensors	1
Conversions	None on market	1
Methanol Research Program

• Vehicle Testing
 – Test several FFVs on varying methanol blends for emissions, driveability, and performance
 • Determine methanol blend limit if any on FTP, HWFET
 • On highest blend assess full load performance, SC03, Cold CO, SRC, and SHED tests

• Engine Testing
 – Baseline on E10 and E85
 – Optimize for best BSFC, emissions, and performance on methanol

• Conversion of non FFVs to methanol
Methanol Research Program

• Materials Compatibility
 – ORNL research on effects of high level methanol gasoline blends
 – Collaborate with work on M15 blends being performed in Israel, China, and Australia
 – Contact Tier 1 OEM suppliers
 • Fuel pumps, sensors, injectors
Methanol Research Program

• Related Studies
 – Resources for the Future, “Cheaper Fuels for the Light-duty Vehicle Sector: Opportunities and Barriers,
 • http://www.rff.org/Publications/Pages/PublicationDetails.aspx?PublicationID=22250
 – MIT, Advanced ICE Technologies with Methanol
Summary

• Natural gas supply in U.S. opens opportunity to introduce less expensive natural gas derived fuels like methanol and ethanol
• Current U.S. fleet of FFVs coupled with conversions creates demand to justify production
• Possible tailpipe emission benefits with existing fleet
• Methanol and ethanol fuels will enable more efficient newer vehicles—lowering GHG impact
• Much work needed to overcome barriers to fuels competition
Summary

• Thank you for your attention

Contact information

Michael D. Jackson
mike.jackson@fuelfreedom.org
www.fuelfreedom.org
1 408 230 2014